Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 397: 130460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373505

RESUMO

A novel efficient pretreatment system containing alkaline deep eutectic solvent (DES) and tetrahydrofuran (THF) was developed in the present study. Under pretreatment conditions of 160 ℃ and 1 h, DES-THF pretreatment was more efficient (81.61%) in cellulose digestibility improvement than DES (choline chloride/monoethanolamine, 67.54%). To further explore lignin structural transformation and lignin-cellulase interaction after pretreatment, milled wood lignin (MWL) was extracted and characterized. Compared with DES-MWL, DES-THF-MWL showed an increased carboxyl group content (24.0%) and decreased condensed phenolic hydroxyl content (9.1%). In DES-MWL, ß-O-4 content was 21.79%, while in DES-THF-MWL, ß-O-4 accounted for 45.45%, indicating that the addition of THF alleviated cleavage of ß-O-4 alkyl ether bonds. Fluorescence emission spectroscopy results showed that quenching mechanism of DES-THF-MWL and cellulase was dynamic, which was different from other lignin. Compared with DES-MWL, decreased Ka between DES-THF-MWL and cellulase indicated decreasing interaction between them. DES-THF pretreatment provides a novel pretreatment method for bioenergy.


Assuntos
Celulase , Lignina , Lignina/química , Triticum , Solventes Eutéticos Profundos , Solventes/química , Hidrólise , Biomassa
2.
ChemSusChem ; : e202301161, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123529

RESUMO

Current DES pretreatment is often performed under relatively severe conditions with high temperature, long time, and high DES usage. This work studied a short-time diol DES (deep eutectic solvent) pretreatment under mild conditions to fractionate the bamboo, facilitate enzymatic hydrolysis, and obtain high-quality lignin. At an optimized condition of 130 °C for only 10 min, lignin and xylan removal reached 61.34 % and 84.15 %, with residual glucan showing a ~90 % enzymatic hydrolysis yield. Equally important, the dissolved lignin could be readily recovered with 97.51 % yield, exhibiting 96.65 % ß-O-4 preservation. The fractionation and lignin protection mechanisms were unveiled by XRD, FTIR, cellulose-DP, 2D HSQC NMR, 31 P NMR and GPC analysis. This study highlighted that short-time fractionation of bamboo can be achieved by a diol-based DES which is an ideal strategy to upgrade the lignocellulose biomass for high enzymatic hydrolysis yields and high-quality lignin stream.

3.
Bioresour Technol ; 385: 129461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423545

RESUMO

Valorization of lignocellulose has received a lot of attention due to the abundance of lignocellulosics. It was showed that synergistic carbohydrate conversion and delignification could be achieved via ethanol assisted DES (choline chloride/lactic acid) pretreatment. To explore the reaction mechanism of lignin in the DES, milled wood lignin obtained from Broussonetia papyrifera was subjected to pretreatment at critical temperatures. The results suggested that ethanol assistance could contribute the incorporation of ethyl groups and reduce condensation structures of Hibbert's ketone. Adding ethanol at 150 °C not only decreased formation of condensed G unit (from 7.23% to 0.87%), but also removed J and S' substructures, thus effectively reducing the adsorption of lignin on cellulase, and promoting the glucose yield after enzymatic hydrolysis.


Assuntos
Etanol , Lignina , Lignina/química , Solventes , Solventes Eutéticos Profundos , Hidrólise , Biomassa
4.
Bioresour Technol ; 343: 126022, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600092

RESUMO

Microwave-assisted guanidine hydrochloride deep eutectic solvents (DESs) was developed for rapid and efficient pretreatment of castor stalk. The DES synthesized with guanidine hydrochloride and lactic acid showed a better delignification (92.02%) and enzymatic saccharification yield (96.3%) than choline chloride and lactic acid DES resulted. In addition, high-purity (up to 98%) lignin was recovered from the pretreatment liquor. The good recyclability of the guanidine hydrochloride-based DES was also proven with up to 90% cellulose hydrolysis with third-time recycled DES without post purification. The proposed microwave-assisted guanidine hydrochloride/lactic acid DES showed its great potentials as a highly effective and recyclable pretreatment solvent for future biorefinery strategies.


Assuntos
Lignina , Micro-Ondas , Biomassa , Guanidina , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...